Purpose: Most neuroblastomas initially respond to therapy but many relapse with chemoresistant disease. p53 mutations are rare in diagnostic neuroblastomas, but we have previously reported inactivation of the p53/MDM2/p14 ARF pathway in 9 of 17 (53%) neuroblastoma cell lines established at relapse. Hypothesis: Inactivation of the p53/MDM2/p14 ARF pathway develops during treatment and contributes to neuroblastoma relapse. Methods: Eighty-four neuroblastomas were studied from 41 patients with relapsed neuroblastoma including 38 paired neuroblastomas at different stages of therapy. p53 mutations were detected by automated sequencing, p14 ARF methylation and deletion by methylation-specific PCR and duplex PCR, respectively, and MDM2 amplification by fluorescent in situ hybridization.Results: Abnormalities in the p53 pathway were identified in 20 of 41 (49%) cases. Downstream defects due to inactivating missense p53 mutations were identified in 6 of 41 (15%) cases, 5 following chemotherapy and/or at relapse and 1 at diagnosis, postchemotherapy, and relapse. The presence of a p53 mutation was independently prognostic for overall survival (hazard ratio, 3.4; 95% confidence interval, 1.2-9.9; P = 0.02). Upstream defects were present in 35% of cases: MDM2 amplification in 3 cases, all at diagnosis and relapse and p14 ARF inactivation in 12 of 41 (29%) cases: 3 had p14 ARF methylation, 2 after chemotherapy, and 9 had homozygous deletions, 8 at diagnosis and relapse. Conclusions: These results show that a high proportion of neuroblastomas which relapse have an abnormality in the p53 pathway. The majority have upstream defects suggesting that agents which reactivate wild-type p53 would be beneficial, in contrast to those with downstream defects in which p53-independent therapies are indicated. Clin Cancer Res; 16(4); 1108-18. ©2010 AACR.Neuroblastoma is the most common extracranial pediatric solid tumor. It remains one of the most difficult cancers to cure, with <40% of patients with high-risk disease (stage 4 over 18 months of age or MYCN-amplified disease) becoming long-term survivors. Most high-risk neuroblastomas initially respond to cytotoxic therapy, however, over half relapse with chemoresistant disease and this often correlates with the intensity of therapy (1).The p53 gene is inactivated by mutation in >50% of human malignancies (2). p53 is a key regulator of cell cycle checkpoints and apoptosis, which upon activation by cellular stress, particularly DNA damage, binds DNA in a sequence-specific manner to activate the transcription of a large number of downstream genes, including p21 and MDM2, which results in apoptosis, cell cycle arrest, differentiation, and DNA repair (reviewed in ref.3). MDM2 functions upstream of p53 as a ubiquitin ligase that targets p53 for proteosome-mediated degradation, forming an autoregulatory feedback loop which tightly regulates p53 cellular levels (4). MDM2 amplification has been shown in some tumors and could suppress the activity of p53 by increasing its degradation.The INK4...