Because the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib and the multitargeted antifolate pemetrexed are registered in the treatment of second-line nonsmall-cell lung cancer (NSCLC), empirical combinations of these drugs are being tested. This study investigated molecular mechanisms underlying their combination in six NSCLC cell lines. Cells were characterized by heterogeneous expression of pemetrexed determinants, including thymidylate synthase (TS) and dihydrofolate reductase (DHFR), and mutations potentially affecting chemosensitivity. Pharmacological interaction was studied using the combination index (CI) method, whereas cell cycle, apoptosis induction, and EGFR, extracellular signalregulated kinases 1 and 2, and Akt phosphorylation were studied by flow cytometry, fluorescence microscopy, and enzyme-linked immunosorbent assays. Reverse-transcriptase polymerase chain reaction (RT-PCR), Western blot, and activity assays were performed to assess whether erlotinib influenced TS. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assays demonstrated that EGFR and k-Ras mutations were related to erlotinib sensitivity, whereas TS and DHFR expression were related to pemetrexed sensitivity. Synergistic cytotoxicity was found in all cells, most pronounced with pemetrexed ϩ erlotinib (24 h) 3 erlotinib (48 h) sequence (CI, 0.09 -0.40), which was associated with a significant induction of apoptosis. Pemetrexed increased EGFR phosphorylation and reduced Akt phosphorylation, which was additionally reduced by drug combination (Ϫ70.6% in H1650). Erlotinib significantly reduced TS expression and activity, possibly via E2F-1 reduction, as detected by RT-PCR and Western blot, and the combination decreased TS in situ activity in all cells. Erlotinib and pemetrexed showed a strong synergism in NSCLC cells, regardless of their genetic characteristics. Induction of apoptosis, modulation of EGFR and Akt phosphorylation, and changes in the expression of critical genes involved in pemetrexed activity contribute to this synergistic interaction and support the clinical investigation of these markers.Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related deaths in the Western world. Chemotherapy represents the backbone of treatment of advanced NSCLC, which represents more than 50% of cases diagnosed. Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org. doi:10.1124/mol.107.042382.ABBREVIATIONS: NSCLC, non-small-cell lung cancer; 5-FU, 5-fluorouracil; AI, apoptotic index; BCRP, breast cancer resistance protein; CI, combination index; DHFR, dihydrofolate reductase; EGFR, epidermal growth factor receptor; FA, fraction affected; FPGS, folyl-polyglutamate synthetase; GARFT, glycinamide ribonucleotide formyltransferase; MRPs, multidrug-related protein; PI3K, phosphatidylinositide 3-kinase; RFC, reduced folate carrier; TKI, tyrosine-kinase inhibitor; TS, thymidylate synthase; LY294002, (2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one ...