Serpins are the largest family of protease inhibitors and are fundamental for the control of proteolysis in multicellular eukaryotes. Most eukaryote serpins inhibit serine or cysteine proteases, however, noninhibitory members have been identified that perform diverse functions in processes such as hormone delivery and tumour metastasis. More recently inhibitory serpins have been identified in prokaryotes and unicellular eukaryotes, nevertheless, the precise molecular targets of these molecules remains to be identified. The serpin mechanism of protease inhibition is unusual and involves a major conformational rearrangement of the molecule concomitant with a distortion of the target protease. As a result of this requirement, serpins are susceptible to mutations that result in polymerization and conformational diseases such as the human serpinopathies. This review reports on recent major discoveries in the serpin field, based upon presentations made at the 4th International Symposium on Serpin Structure, Function and Biology (Cairns, Australia).