Fifty years ago, investigators identified renin inhibition as the preferred pharmacologic approach to blockade of the renin-angiotensin system. Renin is a monospecific enzyme that catalyzes the rate-limiting step in the synthesis of angiotensin II. Amplified enzymatic activity and additional physiological effects occur when renin and pro-renin bind to the (pro)renin receptor. Until very recently, development of clinically effective renin inhibitors remained elusive. Molecular modeling was used to develop aliskiren, a potent, low-molecular-weight, nonpeptide, direct renin inhibitor with sufficient bioavailability to produce sustained suppression of plasma renin activity after oral administration. In patients with hypertension, aliskiren produces dose-dependent blood pressure (BP) reduction and 24-h BP control up to a dose of approximately 300 mg once daily; at these doses, aliskiren shows placebo-like tolerability. Its antihypertensive potency is approximately equivalent to that of angiotensin receptor blockers, angiotensin-converting enzyme inhibitors, and diuretics. After abrupt withdrawal, persistent BP reduction and prolonged suppression of plasma renin activity is observed. When combined with diuretics, fully additive BP reduction is seen. When given with an angiotensin receptor blocker, aliskiren produces significant additional BP reduction indicative of complimentary pharmacology and more complete renin-angiotensin system blockade. Clinical trials are currently underway assessing the effects of aliskiren combined with an angiotensin receptor blocker on intermediate markers of end organ damage, and long-term end point trials are planned. The results of these studies will ultimately determine the place of renin inhibition and aliskiren in the treatment of hypertension and related cardiovascular disorders. The effect of aliskiren on receptor-bound renin and pro-renin is the subject of active investigation.