The development of splenules derived from slices of freshly removed autologous spleen implanted subcutaneously or intraperitoneally was followed by light and electron microscopy from day 2 to day 70. Within 48 hr after transplantation, a rough space filled with blood, unlined by endothelium, formed just under the surface of the splenic fragment. The tissue central to this vascular space was disrupted and necrotic. In the outer portion of the vascular space, fibroblasts appeared and created locules which developed into a highly vascular, hematopoietic red pulp. From the inner portion, blood percolated into the central necrotic tissue. At 1 week the splenule was divisible into concentric structures. The capsule was outermost. A shell of vascularized, highly hematopoietic red pulp lay within the capsule, having replaced the vascular space. Central to the red pulp lay a band of fibroblasts and macrophages. Next was a layer of fibroblasts in a matrix of degenerating cells, and, at the center, a necrotic core. As fibroblasts and macrophages moved centrad, the red pulp moved with them, expanding and replacing the necrotic tissue. The splenule differed in character from the original spleen. Splenular red pulp, especially near the surface, was unusually hematopoietic. The circumferential reticulum of white pulp was reduced or absent, and the boundary between red and white pulp was sometimes indistinct. Some white pulp was subcapsular, and the capsule and surrounding connective tissue were infiltrated by lymphocytes. The necrotic core of the splenule was typically surrounded by a zone containing large blood vessels, connective tissue, and adipocytes.