Cadmium (Cd) has been identified as a significant pollutant due to its high solubility in water and soil and high toxicity to plants and animals. Rice, as one of the most important food crops, is grown in soils with variable levels of Cd and therefore, is important to discriminate the Cd tolerance of different rice cultivars to determine their suitability for cultivation in Cd-contaminated soils. This study investigates the primary mechanisms employed by four rice cultivars in attaining Cd tolerance. HA63 cultivar reduces Cd uptake by increasing Fe absorption through activation of phytosiderophores. T3028 cultivar accumulates the highest level of Cd in leaves while also activating its reactive oxygen species (ROS) scavenging system, including antioxidant enzymes and phytochelatins. In some rice cultivars (such as HA63), a cyanide-resistant respiration mechanism, important in Cd detoxification, was also promoted under the Cd stress. In conclusion, different rice cultivars may adopt different biochemical strategies and respond with different efficiency to Cd stress.