Measurements of nucleoside triphosphate levels in Saccharomyces cerevisiae reveal that the four rNTPs are in 36-to 190-fold molar excess over their corresponding dNTPs. During DNA synthesis in vitro using the physiological nucleoside triphosphate concentrations, yeast DNA polymerase ε, which is implicated in leading strand replication, incorporates one rNMP for every 1,250 dNMPs. Pol δ and Pol α, which conduct lagging strand replication, incorporate one rNMP for every 5,000 or 625 dNMPs, respectively. Discrimination against rNMP incorporation varies widely, in some cases by more than 100-fold, depending on the identity of the base and the template sequence context in which it is located. Given estimates of the amount of replication catalyzed by Pols α, δ, and ε, the results are consistent with the possibility that more than 10,000 rNMPs may be incorporated into the nuclear genome during each round of replication in yeast. Thus, rNMPs may be the most common noncanonical nucleotides introduced into the eukaryotic genome. Potential beneficial and negative consequences of abundant ribonucleotide incorporation into DNA are discussed, including the possibility that unrepaired rNMPs in DNA could be problematic because yeast DNA polymerase ε has difficulty bypassing a single rNMP present within a DNA template.DNA replication | nucleotide precursors | nucleotide selectivity T he integrity of the eukaryotic genome is ensured in part by the chemical nature of the storage medium-DNA. Compared to RNA, DNA is inherently more resistant to strand cleavage due to the absence of a reactive 2′ hydroxyl on the ribose ring. The active sites of most DNA polymerases are evolved to efficiently exclude ribonucleoside triphosphates (rNTPs) from being incorporated during DNA synthesis (reviewed in (1)). However, rNTP exclusion is not absolute. Early studies (reviewed in (1, 2)) revealed that DNA polymerases do incorporate rNMPs during DNA synthesis. Kinetic studies (3-13) have further demonstrated that selectivity for insertion of dNMPs into DNA rather than rNMPs varies from 10-fold to >10 6 -fold, depending on the DNA polymerase and the dNTP/rNTP pair examined. rNMP incorporation during DNA synthesis is potentially made more probable by the fact that the concentrations of rNTPs in vivo are higher than are the concentrations of dNTPs (e.g., see refs. 2, 14 and results of this study). Thus some rNMPs are likely to be stably incorporated into DNA during replication, and possibly during DNA repair, e.g., nonhomologous end joining (NHEJ) of double strand breaks in DNA (9, 15). This possibility is supported by biochemical studies implicating RNase H2 and FEN1 in the repair of single ribonucleotides in DNA (16,17). It is therefore of interest to know just how frequently rNMPs are incorporated into DNA by the DNA polymerases that synthesize the most DNA in a eukaryotic cell, namely DNA polymerases α, δ, and ε. Here we investigate this by first measuring the rNTP and dNTP concentrations in budding yeast. We then use these concentrations in DNA sy...