The use of the mammary gland of transgenic goats as a bioreactor is a well established platform for the efficient production of recombinant proteins, especially for molecules that cannot be adequately produced in traditional systems using genetically engineered microorganisms and cells. However, the extraordinary demand placed on the secretory epithelium by the expression of large amounts of the recombinant protein, may result in a compromised mammary physiology. In this study, milk composition was compared between control and transgenic goats expressing high levels (1-5 g/l) of recombinant human butyrylcholinesterase in the milk. Casein concentration, as evaluated by acid precipitation, was significantly reduced in the transgenic compared with the control goats throughout lactation (P < 0.01). Milk fatty acid composition for transgenic goats, as determined by gas chromatography, was found to have significantly fewer short chain fatty acids (P < 0.01) and more saturated fatty acids (P < 0.05) compared to controls, suggesting an overall metabolic stress and/or decreased expression of key enzymes (e.g. fatty acid synthase, stearoyl-CoA desaturase). The concentration of Na(+), K(+), assessed by atomic absorption spectrophotometry, and serum albumin, determined by bromocresol green dye and scanning densitometry, were similar in transgenic and control goats during the first several weeks of lactation. However, as lactation progressed, a significant increase in Na and serum albumin concentrations and a decrease in K(+) concentration were found in the milk of transgenic goats, while control animals remained unchanged (P < 0.01). These findings suggest that: (a) high expression of recombinant proteins may be associated with a slow-down in other synthetic activities at the mammary epithelium, as evidenced by a reduced casein expression and a decreased de-novo synthesis of fatty acids; (b) the development of permeable tight junctions may be the main mechanism involved in the premature cessation of milk secretion observed in these transgenic goats.