Background
Geranyllinalool, a natural diterpenoid found in plants, has a floral and woody aroma, making it valuable in flavors and fragrances. Currently, its synthesis primarily depends on chemical methods, which are environmentally harmful and economically unsustainable. Microbial synthesis through metabolic engineering has shown potential for producing geranyllinalool. However, achieving efficient synthesis remains challenging owing to the limited availability of terpenoid precursors in microorganisms. Thus, an artificial isopentenol utilization pathway (IUP) was constructed and introduced in
Escherichia coli
to enhance precursor availability and further improve terpenoid synthesis.
Results
We first constructed an artificial IUP in
E. coli
to enhance the supply of precursor geranylgeranyl diphosphate (GGPP) and then screened geranyllinalool synthases from plants to achieve efficient synthesis of geranyllinalool (274.78 ± 2.48 mg/L). To further improve geranyllinalool synthesis, we optimized various cultivation factors, including carbon source, IPTG concentration, and prenol addition and obtained 447.51 ± 6.92 mg/L of geranyllinalool after 72 h of shaken flask fermentation. Moreover, a scaled-up production in a 5-L fermenter was investigated to give 2.06 g/L of geranyllinalool through fed-batch fermentation. To the best of our knowledge, this is the highest reported titer so far.
Conclusions
Efficient synthesis of geranyllinalool in
E. coli
can be achieved through a two-step pathway and optimization of culture conditions. The findings of this study provide valuable insights into the production of other terpenoids in
E. coli
.
Supplementary Information
The online version contains supplementary material available at 10.1186/s12934-024-02563-2.