Additional information:
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
ABSTRACTWe propose a computationally efficient approach for the extraction of dense gradient-based features based on the use of localized intensity-weighted centroids within the image. Whilst prior work concentrates on sparse feature derivations or computationally expensive dense scene sensing, we show that Dense Gradient-based Features (DeGraF) can be derived based on initial multi-scale division of Gaussian preprocessing, weighted centroid gradient calculation and either local saliency (DeGraF-α) or signal-to-noise inspired (DeGraF-β) final stage filtering. We present two variants (DeGraF-α / DeGraF-β) of which the signal-to-noise based approach is shown to perform admirably against the state of the art in terms of feature density, computational efficiency and feature stability. Our approach is evaluated under a range of environmental conditions typical of automotive sensing applications with strong feature density requirements.