2011
DOI: 10.1016/j.amc.2011.01.112
|View full text |Cite
|
Sign up to set email alerts
|

Laguerre polynomial approach for solving linear delay difference equations

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
31
0

Year Published

2013
2013
2023
2023

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 47 publications
(31 citation statements)
references
References 21 publications
0
31
0
Order By: Relevance
“…Here, the standard Laguerre polynomials and their Rodriguez Formula , respectively, are defined by Ln(t)MathClass-rel=falsefalseMathClass-op∑rMathClass-rel=0n(MathClass-bin−1)rrMathClass-punc!()0.3emthinspace0.3emthinspace falsenonefalsearrayarraycenternarraycenterr 0.3emthinspace0.3emthinspacetrMathClass-punc,1emquad0MathClass-rel≤aMathClass-rel≤tMathClass-rel≤bMathClass-rel<MathClass-rel∞ and L0(t)MathClass-rel=1MathClass-punc,1emquadLn(t)MathClass-rel=etnMathClass-punc!dndtn()tneMathClass-bin−tMathClass-punc,1emquad(nMathClass-rel=1MathClass-punc,2MathClass-punc,MathClass-op…)2.05482pttmspaceMathClass-punc.…”
Section: Description Of the Problemmentioning
confidence: 99%
See 3 more Smart Citations
“…Here, the standard Laguerre polynomials and their Rodriguez Formula , respectively, are defined by Ln(t)MathClass-rel=falsefalseMathClass-op∑rMathClass-rel=0n(MathClass-bin−1)rrMathClass-punc!()0.3emthinspace0.3emthinspace falsenonefalsearrayarraycenternarraycenterr 0.3emthinspace0.3emthinspacetrMathClass-punc,1emquad0MathClass-rel≤aMathClass-rel≤tMathClass-rel≤bMathClass-rel<MathClass-rel∞ and L0(t)MathClass-rel=1MathClass-punc,1emquadLn(t)MathClass-rel=etnMathClass-punc!dndtn()tneMathClass-bin−tMathClass-punc,1emquad(nMathClass-rel=1MathClass-punc,2MathClass-punc,MathClass-op…)2.05482pttmspaceMathClass-punc.…”
Section: Description Of the Problemmentioning
confidence: 99%
“…On the other hand, the Laguerre polynomials satisfy the recurrence relation Ln(1)(t)MathClass-rel=LnMathClass-bin−1(1)(t)MathClass-bin−LnMathClass-bin−1(t)MathClass-punc,1emquadL0(1)(t)MathClass-rel=02.05482pttmspaceMathClass-punc.…”
Section: Description Of the Problemmentioning
confidence: 99%
See 2 more Smart Citations
“…The Generalized Laguerre polynomial is widely used in numerical analysis [1,2,3] and Quantum [4]. It is defined with three-term recurrence relation as follow.…”
Section: Introductionmentioning
confidence: 99%