Mean sea surface height (MSSH) is an important parameter, which plays an important role in the analysis of the geoid gap and the prediction of ocean dynamics. Traditional measurement methods, such as the buoy and ship survey, have a small cover area, sparse data, and high cost. Recently, the Global Navigation Satellite System-Reflectometry (GNSS-R) and the spaceborne Cyclone Global Navigation Satellite System (CYGNSS) mission, which were launched on 15 December 2016, have provided a new opportunity to estimate MSSH with all-weather, global coverage, high spatial-temporal resolution, rich signal sources, and strong concealability. In this paper, the global MSSH was estimated by using the relationship between the waveform characteristics of the delay waveform (DM) obtained by the delay Doppler map (DDM) of CYGNSS data, which was validated by satellite altimetry. Compared with the altimetry CNES_CLS2015 product provided by AVISO, the mean absolute error was 1.33 m, the root mean square error was 2.26 m, and the correlation coefficient was 0.97. Compared with the sea surface height model DTU10, the mean absolute error was 1.20 m, the root mean square error was 2.15 m, and the correlation coefficient was 0.97. Furthermore, the sea surface height obtained from CYGNSS was consistent with Jason-2′s results by the average absolute error of 2.63 m, a root mean square error ( RMSE ) of 3.56 m and, a correlation coefficient ( R ) of 0.95.