The art of designing and synthesizing organic molecules has reached very high levels of sophistication, based on a relatively simple set of rules that guide both the invention and synthesis of new compounds. This set of rules is construed as the rational synthetic method of organic chemistry. As material chemists confronted to the task of building new solid structures with tailored chemical properties, we do inevitably need to develop some rational approach and to establish the corresponding set of rules allowing a realistic level of predictive knowledge in the construction of solid scaffolds. These conditions are reasonably accomplished by the use of layered salts of tetravalent transition metals, namely zirconium phosphate (ZrP). The placing of organic molecules between the layers of ZrP is quite straightforward, can easily be controlled and leads to enduring, solid materials where the confinement makes the organic molecules to show new properties at the supramolecular level. The chemistry of metal phosphates/phosphonates will be detailed in relation with the following topics: (i) molecular recognition, (ii) chemically driven porosity changes, (iii) chiral memory and supramolecular chirality, (iv) luminescence signalling, (v) photo-induced electron-transfer processes, (vi) hydrogen storage, (vii) confinement of drugs and (viii) metal uptake.