Sensory corpuscles of human skin are terminals of primary mechanoreceptive neurons associated with non-neuronal cells that function as low-threshold mechanoreceptors. Structurally, they consist of an extreme tip of a mechanosensory axon and nonmyelinating peripheral glial cells variably arranged according to the morphotype of the sensory corpuscle, all covered for connective cells of endoneurial and/or perineurial origin. Although the pathologies of sensitive corpuscles are scarce and almost never severe, adequate knowledge of the structure and immunohistochemical profile of these formations is essential for dermatologists and pathologists. In fact, since sensory corpuscles and nerves share a basic structure and protein composition, a cutaneous biopsy may be a complementary method for the analysis of nerve involvement in peripheral neuropathies, systemic diseases, and several pathologies of the central nervous system. Thus, a biopsy of cutaneous sensory corpuscles can provide information for the diagnosis, evolution, and effectiveness of treatments of some pathologies in which they are involved. Here, we updated and summarized the current knowledge about the immunohistochemistry of human sensory corpuscles with the aim to provide information to dermatologists and skin pathologists.