Numerical investigations on flow and heat transfer characteristics in the heat exchanger tube with the V-wavy surface are presented. The finite volume method with the SIMPLE algorithm is selected to solve the present problem. The effects of flow attack angles (α = 15°, 20°, 25°, 30°, 35°, 40°, 45°, 50°, 55°, and 60°) and flow directions (V-tip pointing downstream known as “V-Downstream” and V-tip pointing upstream known as “V-Upstream”) for the V-wavy surface on flow and heat transfer patterns are considered for both laminar and turbulent regions. The laminar regime is studied in the range Re = 100–1200, while the turbulent region is investigated in the range Re = 3000–10,000. The mechanisms on flow and heat transfer in the test section are reported. The numerical results reveal that the V-wavy surface changes the flow structure in the test section. The vortex flow is produced by the V-wavy surface. The vortex flow disturbs the thermal boundary layer on the heat transfer surface that is the reason for heat transfer and thermal performance enhancements. The optimum flow attack angles of the V-wavy surface for laminar and turbulent regimes are concluded.