We have studied variations in the structure and composition of minerals from the pipes of the Yakutian kimberlite province (YKP) in different mantle terranes of the Siberian craton. The study was based on an extensive database, including the microprobe analysis datasets consolidated by IGM, IG, IEC and IGDNM SB RAS and ALROSA and geochemical analysis of minerals performed by LA-ICP-MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry). The reconstruction shows layering under the tubes, including 6-7 slab that were probably formed due to subduction; the slabs are separated by pyroxenitic, eclogitic and metasomatic layers and dunite lenses. Transects and mantle profiles across kimberlite fields are constructed. Within the limits of the revealed tectonic terranes, we assume a collage of microplates formed in the early-middle Archean. Extended submeridional structures of the tectonic terranes are not always confirmed at the mantle level. Beneath the Anabar and Aldan shields, the mantle sections show more coarse layers and 3-4 large horizons of dunites with garnet and pyroxene nests separated by ilmenite-phlogopite metasomatites and pyroxenites. Terranes representing the suture zones between the protocratons (e.g. Khapchan) are often saturated with eclogites and pyroxenites that may occur as leghthy ascending bodies of magmatic eclogites penetrating through the mantle lithosphere structure (ML). A nearly ubiquitous pyroxenite layer at the level of 3.5-4.5 GPa formed probably in the early Archean with a high heat flux during melting of eclogites and was subsequently traced by plume melts. Within the early Archean protocratons-granite-greenstone terranes (Tungus, Markha, Berekta, and Sharyzhalgai, ~3.8-3.0 Gyr [Gladkochub et al., 2019], the mantle lithosphere is less depleted and largely metasomatized. The ML structure of the Daldyn and Magan granulite-orthogneiss terranes is layered with folding revealed in the north-to-south sections from the Udachnaya pipe to the Krasnopresnenskaya pipe, which is less pronounced in the latitudinal direction. From the Daldyn field to the Alakit field, there is an increase in the degree of metasomatism, and higher alkalinity of pyroxenes and larger amounts of phlogopite are noted. The most productive Aikhal and Yubileinaya pipes are confined to a dunite core, which is accompanied by a change in the specialization of high-charge elements Ta-Nb to Zr-Hf. Within the limits of the Magan terrane, the thin-layer structure of the middle GEODYNAMICS & TECTONOPHYSICS