This study attempts to identify how much understanding of the driving forces of land-use changes can be gained through a spatial, statistical analysis. Hereto, spatial, statistical models of the proximate causes of different processes of land-use change in the Mara Ecosystem (Kenya) were developed, taking into account the spatial variability of the land-use change processes. The descriptive spatial models developed here suggest some important factors driving the land-use changes that can be related to some well-established theoretical frameworks. The explanatory variables of the spatial model of mechanised agriculture suggest a von Thünen-like model, where conversion to agriculture is controlled by the distance to the market, as a proxy for transportation costs, and agro-climatic potential. Expansion of smallholder agriculture and settlements is also controlled by land rent, defined, in this case, by proximity to permanent water, land suitability, location near a tourism market, and vicinity to villages to gain access to social services (e.g. health clinics, schools, local markets). This difference in perception of land rent reflects the widely different social and economic activities and objectives of smallholders versus the large entrepreneurs involved in mechanised farming. Spatial heterogeneity as well as the variability in time of land-use change processes affect our ability to use regression models for wide ranging extrapolations. The models allow evaluating the impact of changes in driving forces that are well represented by proximate causes of land-use change.