Rapid simulation of land subsidence can provide an effective means of facilitating its management and control. This paper innovatively introduced a back-propagation (BP) neural network subsidence simulation model which was optimized by the sparrow search algorithm (SSA), hereinafter referred to as the SSA-BP model, to simulate land subsidence in Tongzhou District, Beijing. First, based on the time series interferometric synthetic aperture radar (InSAR) monitoring, different technologies such as spatial analysis, Google Earth Engine (GEE), and machine learning were utilized together with a variety of multi-source spatial data, including groundwater level, compressible layer thickness, Visible Infrared Imager Radiometer Suite (VIIRS) nighttime light images, and the OpenStreetMap (OSM) road distribution. Furthermore, we determined the optimal grid scale for land subsidence research and worked out a multifactor-driven SSA-BP land subsidence simulation model for which sensitivity analysis was performed with great care. Main conclusions: (1) From November 2010 to January 2020, the average annual surface displacement rate in Beijing’s subcentre, Tongzhou, ranged from −133.9 to +3.9 mm/year. (2) Our SSA-BP land subsidence simulation model allows for a relatively high overall accuracy. The average root mean square error (RMSE) is 5.00 mm/year, the average mean absolute error (MAE) is 3.80 mm/year, and the average coefficient of determination (R2) is 0.83. (3) Sensitivity analysis shows that the SSA-BP model driven by multiple factors has a far better simulation performance than the model driven by any single weighting factor, and displays the highest sensitivity to the groundwater level factor among all the weighting factors. In terms of subdividing the study area, our SSA-BP land subsidence model runs with multifunctional zones displayed a higher accuracy than that without. This paper made use of a machine learning model to simulate land subsidence in Beijing’s Tongzhou District and explored the sensitivity of different factors to land subsidence, which is helpful for its scientific prevention.