“…Several studies were conducted based on dynamic changes of land use and land cover with land cover change detection and supervised classification (Akyürek et al 2018;Seyam et al 2023) and accuracy assessment using the kappa coefficient (Tewabe and Fentahun, 2020;Hussain and Karuppannan, 2023), and prediction by satellite image of landsat-7 and landsat-8 using cellular automated and Markov chains (Abijith and Saravanan, 2022;Wang et al 2021). Deep learning (DL)-based method (Song et al 2021), supervised classification, NDVI method (Pande et al 2021) including field verification and Google Earth Professional (Kamel, 2020), NDWI method (Raut et al 2020), MNDWI method (Bhattacharjee et al 2021), transition matrix method (Bagwan and Sopan, 2021), post classification matrix (Kouhgardi et al 2022; Márquez-Romance et al 2022; Das and Angadi, 2022), classprior object-oriented conditional random field (COCRF) method (Shi et al 2020), maximum likelihood classifier (MLC) method (Kumar and Jain, 2020; Saini et al 2019;Sarif and Gupta, 2022), Siamese global learning framework (Zhu et al 2022), preprocessing and classification and accuracy assessment (Thakur et al 2020;Mondal et al 2021;Mondal et al 2022), using various satellite imagery such as Landsat, MODIS, Sentinel and SPOT. The advantage of Landsat satellite data is the free accessibility of multi-temporal time series since 1972 (Lu et al 2019).…”