Many coastal communities in the US use base flood elevation (BFE) maps for the 100-year return period, specified on Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRMs), to design structures and infrastructure. The FIRMs are increasingly known to have serious problems in accurately specifying the risk coastal communities face, as most recently evidenced during hurricanes Harvey and Irma in 2017 and Florence and Michael in 2018. The FIRM BFE maps also do not include the impact of sea level rise, which clearly needs to be considered in the design of coastal structures over the next several decades given recent National Oceanic and Atmospheric Administration (NOAA) sea level rise (SLR) projections. Here, we generate alternative BFE maps (STORMTOOLS Design Elevation (SDE) maps) for coastal waters of Rhode Island (RI) using surge predictions from tropical and extratropical storms of the coupled surge-wave models from the US Army Corp of Engineers, North Atlantic Comprehensive Coast Study (NACCS). Wave predictions are based on application of a steady state, spectral wave model (STWAVE), while impacts of coastal erosion/accretion and changes of geomorphology are modeled using XBeach. The high-resolution application of XBeach to the southern RI shoreline has dramatically increased the ability to represent the details of dune erosion and overtopping and the associated development of surge channels and over-wash fans and the resulting landward impact on inundation and waves. All methods used were consistent with FEMA guidelines for the study area and used FEMA-approved models. Maps were generated for 0, 2 ft (0.6 m), 5 ft (1.5 m), 7 ft (2.1 m), and 10 ft (3.1 m) of sea level rise, reflecting NOAA high estimates at various times for the study area through 2100. Results of the simulations are shown for both the southern RI shoreline (South Coast) and Narragansett Bay, to facilitate communication of projected BFEs to the general public. The maps are hosted on the STORMTOOLS ESRI Hub to facilitate access to the data. They are also now part of the RI Coastal Resources Management Council (CRMC) risk-based permitting system. The user interface allows access to all supporting data including grade elevation, inundation depth, and wave crest heights as well as corresponding FEMA FIRM BFEs and associated zones.