In a typical modern agricultural Zone of southeastern China, Haining City, 224 topsoil samples were collected from paddy fields to measure the total concentrations of copper (Cu), lead (Pb), zinc (Zn), cadmium (Cd), chromium (Cr), mercury (Hg), arsenic (As) and cobalt (Co). The total concentrations ranged from 15.30 to 78.40 mg kg -1 for Cu, 20.10 to 41.40 mg kg -1 for Pb, 54.98 to 224.4 mg kg -1 for Zn, 0.04 to 0.24 mg kg -1 for Cd, 54.90 to 197.1 mg kg -1 for Cr, 0.03 to 0.61 mg kg -1 for Hg, 3.44 to 15.28 mg kg -1 for As, and 7.17 to 19.00 mg kg -1 for Co. Chemometric techniques and geostatistics were utilized to quantify their spatial characteristics and define their possible sources. All eight metals had a moderate spatial dependency except that Pb had a strong spatial dependency. Both factor analysis and cluster analysis successfully classified the eight metals into three groups or subgroups, the first group included Cu, Zn and Cr, the second group included Cd, As and Co, and the last group included Pb and Hg. The Cu, Zn and Cr concentrations in majority samples were higher than their local background concentrations and they were highly correlated (r [ 0.80), indicating that they had similar pollution source and anthropic factor controlled their spatial distribution; the Cd, As and Co concentrations in majority samples were lower than their local background concentrations, indicating that the source of these elements was mainly controlled by natural factors; the mean concentration of Pb exhibited generally low level, close to its local background concentration, the Hg concentration in about half of samples was higher than its local background concentration, and they were poor correlated with the other metals, indicating that the source of Pb and Hg was common controlled by natural factor and anthropic factor.