A goal of wetland restoration is the establishment of resilient plant communities that persist under a variety of environmental conditions. We investigated the role of intraspecific and interspecific variation on plant community establishment in a brackish marsh that had been restored by sediment addition. Plant growth, sediment accretion, and surface elevation change in planted, not-planted, and nearby reference sites (treatments) were compared. Four perennial macrophytes were planted: Bolboschoenus robustus, Distichlis spicata, Phragmites australis, and Schoenoplectus californicus. There was 100% survival of the planted species, and all exhibited rapid vegetative spread. Intraspecific variation in stem height and cover was identified, and interspecific comparisons also indicated differences in species cover. Treatment comparisons revealed that final total cover at not-planted sites was equivalent to that at reference sites, and was highest at planted sites where P. australis became dominant. Species richness was initially highest at the reference sites, but final richness was equivalent among treatments. Soil surface elevation was greater at planted compared to not-planted and reference sites. Because of the rapid cover and increased surface elevation generated by planted species, the resiliency of restored coastal marshes may be enhanced by plantings in areas where natural colonization is slow and subsidence is high.