Promoting coexistence between humans and their physical and ecological environment, including wildlife, has been given an increased importance due to a recent shift of society to become environmentally sustainable. However, humans and large carnivores have been in conflict throughout history. One of the most prominent reasons for this conflict is damages to livestock and domestic animals. Population reduction or even local eradication has often been used as a damage mitigation strategy. However, number of carnivore damages need to be positively related to carnivore densities for population reduction to be an effective damage limitation tool. Sweden is a country in northern Europe with frequent human-carnivore conflicts, spurred by an intense and polarized public debate. We use a 20-year data set on brown bear (Ursus arctos), Eurasian lynx (Lynx lynx) and wolf (Canis lupus) and their damages in Sweden to evaluate if temporal variation in carnivore densities has caused an equivalent variation in the number of damages to cattle, sheep and domestic dogs, if such relationships differed between the carnivore species and damage types, and if there were geographic scale dependencies in these relationships. We observed contradictory effects of large carnivore densities on damages, which included both positive and negative effects. Differences occurred between carnivore species, damage types, geographic areas, and spatial scales. However, wolf densities appeared to have been positively related to the number of damages more often than bear and lynx densities. Our results highlight that large carnivore damages can be highly context dependent, and that other factors than the size of local or regional carnivore populations may be more important damage determinants. Such an interpretation implies that population reduction may not necessarily be an effective method for limiting large carnivore damages, and highlight that damage mitigation strategies need to be flexible over time and space. We recommend further studies identifying the contexts in which large carnivore densities influence damages to livestock and domestic animals, as well as studies aimed at identifying other factors that may be related to the number of damages.