Background and Objectives: Fungi degrade lignin and other fibers, thus playing an essential role in the decomposition of Phyllostachys edulis (Carrière) J.Houz. (Moso bamboo) stumps. Herein, we characterized key soil fungal communities near different levels of decomposing Moso bamboo stumps (mildly, moderately, and heavily decayed). Materials and Methods: High-throughput sequencing technology was used to analyze the soil fungal communities inside and outside of mild, moderate, and heavy decomposing Moso bamboo stumps. Results: We found nine phyla, 30 classes, 77 orders, 149 families, and 247 genera of soil fungi near the bamboo stumps. Soil fungi OTUs and diversity and richness indices were lower outside than inside the stumps, and decreased with increasing degrees of decay. Inside the bamboo stumps, Soil fungi OTUs and diversity and richness indices were the highest and lowest in moderate and heavy decay bamboo stumps, respectively. Ascomycota dominated inside (from 81% to 46%) and outside (from 69% to 49%) the stumps, and their relative abundance gradually decreased with decomposition, whereas that of Basidiomycota increased outside the stumps (from 17% to 49%). Two-way ANOVA showed that the interaction between the two factors of occurring inside and outside the bamboo stumps and the degree of decay, significantly affected Chytridiomycota and Penicillium (p < 0.001) and significantly affected Mucoromycota (p < 0.05). The abundance of different genera was significantly correlated with saprotrophic functional groups. Conclusion: Changes in the structure and functional groups of soil fungal communities may play an important role during different levels of decomposition of Moso bamboo stumps. This study provides a scientific basis for screening functional fungal strains that promote the decomposition of Moso bamboo stumps.