Accurate landslide displacement prediction is an essential prerequisite for early warning systems aimed at mitigating geological hazards. However, the inherent nonlinearity and dynamic complexity of landslide evolution often hinder forecasting performance. Previous studies have frequently combined signal decomposition techniques with individual machine learning methods to enhance prediction reliability. To address the limitations and uncertainties associated with individual models, this study presents a hybrid framework for displacement forecasting that combines variational mode decomposition (VMD) with multiple deep learning (DL) methods, including long short-term memory neural network (LSTM), gated recurrent unit neural network (GRU), and convolutional neural network (CNN), using a cloud model-based weighted strategy. Specifically, VMD decomposes cumulative displacement data into trend, periodic, and random components, thereby reducing the non-stationarity of raw data. Separate DL networks are trained to predict each component, and the forecasts are subsequently integrated through the cloud model-based combination strategy with optimally assigned weights. The proposed approach underwent thorough validation utilizing field monitoring data from the Baishuihe landslide in the Three Gorges Reservoir (TGR) region of China. Experimental results demonstrate the framework’s capacity to effectively leverage the strengths of individual forecasting methods, achieving RMSE, MAPE, and R values of 12.63 mm, 0.46%, and 0.987 at site ZG118, and 20.50 mm, 0.52%, and 0.990 at site XD01, respectively. This combined approach substantially enhances prediction accuracy for landslides exhibiting step-like behavior.