Forecasting the development of large-scale landslides is a contentious and complicated issue. In this study, we put forward the use of multi-factor support vector regression machines (SVRMs) for predicting the displacement rate of a large-scale landslide. The relative relationships between the main monitoring factors were analyzed based on the long-term monitoring data of the landslide and the grey correlation analysis theory. We found that the average correlation between landslide displacement and rainfall is 0.894, and the correlation between landslide displacement and reservoir water level is 0.338. Finally, based on an in-depth analysis of the basic characteristics, influencing factors, and development of landslides, three main factors (i.e., the displacement rate, reservoir water level, and rainfall) were selected to build single-factor, two-factor, and three-factor SVRM models. The key parameters of the models were determined using a grid-search method, and the models showed high accuracies. Moreover, the accuracy of the two-factor SVRM model (displacement rate and rainfall) is the highest with the smallest standard error (RMSE) of 0.00614; it is followed by the three-factor and single-factor SVRM models, the latter of which has the lowest prediction accuracy, with the largest RMSE of 0.01644.