“…Along with the development of information technologies, remote sensing and the geographic information system (GIS) have gradually become data sources and spatial analysis platforms for LSP [6,7]. Based on remote sensing and GIS, many mathematical models have been proposed to calculate landslide susceptibility indices (LSI), such as the analytic hierarchy process [8][9][10], weight evidence method [11], information value (IV) theory [5,12], frequency ratio (FR) method [13,14], logistic regression model [7,15,16], logistic tree model [17], random tree [18,19], boosted tree [20], multi-criteria evaluation model [21], artificial neural networks (ANNs) [22][23][24], support vector machine (SVM) [25][26][27], and neuro-fuzzy method [28]. Although many models have been proposed for LSP, there is no model that is universally accepted and there is much room for improvement for these models.…”