“…Over the past few decades, numerous scholars have developed effective techniques for producing precise landslide susceptibility maps. Examples of these approaches include frequency ratio (Goetz et al, 2015;Budha et al, 2016;Lee et al, 2016;Paudyal & Maharjan, 2022;(Neupane et al, 2023), logistic regression Steger et al, 2016); decision trees (Lee & Park, 2013;Pradhan, 2013;Tsangaratos & Ilia, 2016); fuzzy logic (Feizizadeh et al, 2014;Park et al, 2014;Pradhan, 2011), neurofuzzy systems (Pradhan, 2013;Aghdam et al, 2016;Lee et al, 2015); support vector machines (Pradhan, 2013;Peng et al, 2014;Lee et al, 2017;Tien Bui et al, 2017); artificial neural networks (Conforti et al, 2014;Pradhan & Lee, 2010;Tsangaratos & Benardos, 2014); and multimethod approaches (Althuwaynee et al, 2016;Pham et al, 2016;Pradhan, 2010;Yalcin et al, 2011). In this study, the effectiveness of the landslide susceptibility assessment was evaluated using the frequency ratio (FR) method.…”