Choosing appropriate landslide-controlling factors (LCFs) in landslide susceptibility mapping (LSM) is a challenging task and depends on the nature of terrain and expert knowledge and experience. Nowadays, it is very common to use digital elevation model (DEM) and DEM-derivatives, as a representation of the topographic conditions. The objective of this study is to explore topography in depth and simultaneously reduce redundant information within DEM-derivatives using principal component analysis. Moreover, this study investigates the impact of DEM-derived factors on LSM. Therefore, three various strategies were tested. The first strategy included a set of LCFs created from the four initial principal components, which were provided from DEM-derived factors. The second strategy included a set of parameters which contained additional lithological and environmental factors. The third strategy utilises the analytical hierarchy process (AHP) to assign weights to each LCF. The LSM was performed based on landslide susceptibility index. Obtained results show that 60% of existing landslides fell into high and very high susceptibility zones using first and second strategies. It proves that topographic factors play a significant role in LSM. Adding additional lithological and environmental factors to the set of LCFs did not improve the results significantly, unless the AHP was used in the third strategy. It improved results significantly; up to 70%. Results from second and third strategies highlight utility of AHP in LSM. Presented studies were performed on the area very prone to landslide occurrence in the region of Ro_ znów Lake, Poland.