In this chapter, fractional calculus is used to develop some results on integral inequalities and differential equations. We develop some results related to the Hermite-Hadamard inequality. Then, we establish other integral results related to the Minkowski inequality. We continue to present our results by establishing new classes of fractional integral inequalities using a family of positive functions; these classes of inequalities can be considered as generalizations of order n for some other classical/fractional integral results published recently. As applications on inequalities, we generate new lower bounds estimating the fractional expectations and variances for the beta random variable. Some classical covariance identities, which correspond to the classical case, are generalised for any α ≥ 1, β ≥ 1. For the part of differential equations, we present a contribution that allow us to develop a class of fractional chaotic electrical circuit. We prove recent results for the existence and uniqueness of solutions for a class of Langevin-type equation. Then, by establishing some sufficient conditions, another result for the existence of at least one solution is also discussed.