Cortistatin-14 (CST-14) is a putative novel neuropeptide that shares 11 of its 14 residues with somatostatin-14 (SRIF-14), yet its effects on sleep physiology, locomotor behavior and hippocampal function are different from those of somatostatin. We studied the structural basis for cortistatin's distinct biological activities. As with SRIF-14, CST-14 does not show any preferred conformation in solution, as determined by circular dichroism and nuclear magnetic resonance. Synthetic cortistatin analogs were designed and synthesized based on the cyclic structure of octreotide. Biological assays were carried out to determine their binding affinities to five somatostatin receptors (sstl-5) and their ability to produce changes in locomotor activity and to modulate hippocampal physiology and sleep. The results show that the compound with N-terminal proline and C-terminal lysine amide exhibits cortistatin-like biological activities, including reduction of population spike amplitudes in the hippocampal CA1 region, decrease in locomotor activity and enhancement of slow-wave sleep 2. These findings suggest that both proline and lysine are necessary for cortistatin binding to its specific receptor.