Breast cancer is the most vicious killer for women, and tumor metastasis is one of the leading causes of breast cancer therapy failure. In this study, a new pH-sensitive polymer (polyethylene glycol-block-poly[(1,4-butanediol)-diacrylate-β-N,N-diisopropylethylenediamine], BDP) was synthesized. Based on BDP, docetaxel/silibinin co-delivery micelles (DSMs) was constructed. DSM had a well-defined spherical shape under the transmission electron microscope with average hydrodynamic diameter of 85.3±0.4 nm, and were stable in the bloodstream but could dissociate to release the chemotherapeutic agents in the low pH environment of the endo/lysosomes in the tumor cells. Compared with free drugs, DSM displayed greatly enhanced cellular uptake, higher cytotoxicity and a stronger anti-metastasis effect against mouse breast cancer cell line 4T1. In 4T1 tumor-bearing mice treated with DSM (twice a week for 3 weeks), the inhibition rate on tumor growth and metastasis reached 71.9% and 80.1%, respectively. These results reveal that DSM might be a promising drug delivery system for metastatic breast cancer therapy.