Salmonella enterica
serovar Typhimurium (
S
. Typhimurium) controls lipopolysaccharide (LPS) biosynthesis by regulating proteolysis of LpxC, the rate-limiting enzyme and target of preclinical antibiotics. PbgA/YejM/LapC regulates LpxC levels and controls outer membrane (OM) LPS composition at the log-to-stationary phase transition. Suppressor substitutions in
L
PS
a
ssembly
p
rotein
B
(LapB/YciM) rescue the LPS and OM integrity defects of
pbgA
-mutant
S
. Typhimurium. We hypothesized that PbgA regulates LpxC proteolysis by controlling LapB’s ability to bind LpxC as a function of the growth phase. According to existing models, when nutrients are abundant, PbgA binds and restricts LapB from interacting with LpxC and FtsH, which limits LpxC proteolysis. However, when nutrients are limited, there is debate whether LapB dissociates from PbgA to bind LpxC and FtsH to enhance degradation. We sought to examine these models and investigate how the structure of LapB enables salmonellae to control LpxC proteolysis and LPS biosynthesis. Salmonellae increase LapB levels during the stationary phase to promote LpxC degradation, which limits lipid A-core production and increases their survival. The deletion of
lapB
, resulting in unregulated lipid A-core production and LpxC overabundance, leads to bacterial growth retardation. Tetratricopeptide repeats near the cytosol-inner membrane interface are sufficient for LapB to bind LpxC, and remarkably, LapB and PbgA interact in both growth phases, yet LpxC only associates with LapB in the stationary phase. Our findings support that PbgA-LapB exists as a constitutive complex in
S
. Typhimurium, which differentially binds LpxC to control LpxC proteolysis and limit lipid A-core biosynthesis in response to changes in the environment.
IMPORTANCE
Antimicrobial resistance has been a costly setback for human health and agriculture. Continued pursuit of new antibiotics and targets is imperative, and an improved understanding of existing ones is necessary. LpxC is an essential target of preclinical trial antibiotics that can eliminate multidrug-resistant Gram-negative bacterial infections. LapB is a natural LpxC inhibitor that targets LpxC for degradation and limits lipopolysaccharide production in Enterobacteriaceae. Contrary to some studies, findings herein support that LapB remains in complex instead of dissociating from its presumed negative regulator, PbgA/YejM/LapC, under conditions where LpxC proteolysis is enhanced. Advanced comprehension of this critical protein-lipid signaling network will lead to future development and refinement of small molecules that can specifically interfere.