2011
DOI: 10.1007/s11232-011-0092-0
|View full text |Cite
|
Sign up to set email alerts
|

Laplace-type exact asymptotic formulas for the Bogoliubov Gaussian measure

Abstract: We obtain new asymptotic formulas for two classes of Laplace-type functional integrals with the Bogoliubov measure. The principal functionals are the L p functionals with 0 < p < ∞ and two functionals of the exact-upper-bound type. In particular, we prove theorems on the Laplace-type asymptotic behavior for the moments of the L p norm of the Bogoliubov Gaussian process when the moment order becomes infinitely large. We establish the existence of the threshold value p0 = 2 + 4π 2 /β 2 ω 2 , where β > 0 is the i… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
2
0
3

Year Published

2012
2012
2017
2017

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 12 publications
(5 citation statements)
references
References 35 publications
0
2
0
3
Order By: Relevance
“…In particular, of great theoretical and practical interest is the problem of approximate evaluation of distributions of such functionals as 1 0 |x(t)| p dt, 0 < p < ∞ (which we refer to as the L p -functional), sup 1] |x(t)|, etc. In [14][15][16][17][18][19], based on various modifications of the Laplace method in functional spaces, approximate (asymptotic) formulas for these distributions are obtained in the regions of large and small values (see also [20]). …”
Section: Introduction and Formulation Of The Main Resultsmentioning
confidence: 99%
“…In particular, of great theoretical and practical interest is the problem of approximate evaluation of distributions of such functionals as 1 0 |x(t)| p dt, 0 < p < ∞ (which we refer to as the L p -functional), sup 1] |x(t)|, etc. In [14][15][16][17][18][19], based on various modifications of the Laplace method in functional spaces, approximate (asymptotic) formulas for these distributions are obtained in the regions of large and small values (see also [20]). …”
Section: Introduction and Formulation Of The Main Resultsmentioning
confidence: 99%
“…4, п. 5], [9], [10]). Точные вычисления указанных моментов -это, как пра-вило, чрезвычайно сложная задача, поэтому значительный теоретический и практический интерес представляют приближенные и асимптотические фор-мулы.…”
Section: § 1 введение и формулировка основных результатовunclassified
“…Естественно, задачи 1-4 представляют интерес и в случае однородных мар-ковских процессов с траекториями, интегрируемыми в p-й степени п. н. В на-стоящее время наиболее эффективным методом решения задач типа 1 (в случае гауссовских процессов) и типа 4 (в случае однородных марковских процессов) является метод Лапласа для функциональных интегралов, развитый в рабо-тах [9], [10], [15]- [19]. Этот метод представляет собой бесконечномерный ана-лог обычного одномерного метода Лапласа.…”
Section: § 1 введение и формулировка основных результатовunclassified
See 1 more Smart Citation
“…The general precise asymptotics can't be obtained due to the lack of tools which will be explained below, see [13] and [44]. Ellis and Rosen in 1980s derived precise asymptotics in the form (1.3) for Gaussian probability measures by suitable technical arguments based on Hilbert spaces, see [16], [17], [18], [36] and [23].…”
Section: Introductionmentioning
confidence: 99%