2022
DOI: 10.3390/ma15217805
|View full text |Cite
|
Sign up to set email alerts
|

Lapping Quality Prediction of Ceramic Fiber Brush Based on Gaussian-Restricted Boltzmann Machine

Abstract: Although ceramic fiber brushes have been widely used for deburring and surface finishing, the associated relationship between process parameters and lapping quality is still unclear. In order to optimize the lapping process of ceramic fiber brushes, this paper proposes a multi-layer neural network based on the Gaussian-restricted Boltzmann machine (GRBM), and verified its prediction effectiveness. Compared with a traditional back-propagation neural network, its prediction error was reduced from 7.6% to 4.5%, a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 31 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?