CONSPECTUS: Atomic crystals of two-dimensional materials consisting of single sheets extracted from layered materials are gaining increasing attention. The most well-known material from this group is graphene, a single layer of graphite that can be extracted from the bulk material or grown on a suitable substrate. Its discovery has given rise to intense research effort culminating in the 2010 Nobel Prize in physics awarded to Andre Geim and Konstantin Novoselov. Graphene however represents only the proverbial tip of the iceberg, and increasing attention of researchers is now turning towards the veritable zoo of so-called "other 2D materials". They have properties complementary to graphene, which in its pristine form lacks a bandgap: MoS 2 , for example, is a semiconductor, while NbSe 2 is a superconductor. They could hold the key to important practical applications and new scientific discoveries in the two-dimensional limit. This family of materials has been studied since the 1960s, but most of the research focused on their tribological applications: MoS 2 is best known today as a high-performance dry lubricant for ultrahigh-vacuum applications and in car engines. The realization that single layers of MoS 2 and related materials could also be used in functional electronic devices where they could offer advantages compared with silicon or graphene created a renewed interest in these materials. MoS 2 is currently gaining the most attention because the material is easily available in the form of a mineral, molybdenite, but other 2D transition metal dichalcogenide (TMD) semiconductors are expected to have qualitatively similar properties. In this Account, we describe recent progress in the area of single-layer MoS 2 -based devices for electronic circuits. We will start with MoS 2 transistors, which showed for the first time that devices based on MoS 2 and related TMDs could have electrical properties on the same level as other, more established semiconducting materials. This allowed rapid progress in this area and was followed by demonstrations of basic digital circuits and transistors operating in the technologically relevant gigahertz range of frequencies, showing that the mobility of MoS 2 and TMD materials is sufficiently high to allow device operation at such high frequencies. Monolayer MoS 2 and other TMDs are also direct band gap semiconductors making them interesting for realizing optoelectronic devices. These range from simple phototransistors showing high sensitivity and low noise, to light emitting diodes and solar cells. All the electronic and optoelectronic properties of MoS 2 and TMDs are accompanied by interesting mechanical properties with monolayer MoS 2 being as stiff as steel and 30× stronger. This makes it especially interesting in the context of flexible electronics where it could combine the high degree of mechanical flexibility commonly associated with organic semiconductors with high levels of electrical performance. All these results show that MoS 2 and TMDs are promising materials for elect...