2022
DOI: 10.48550/arxiv.2207.03988
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Large Bayesian VARs with Factor Stochastic Volatility: Identification, Order Invariance and Structural Analysis

Abstract: Vector autoregressions (VARs) with multivariate stochastic volatility are widely used for structural analysis. Often the structural model identified through economically meaningful restrictions-e.g., sign restrictions-is supposed to be independent of how the dependent variables are ordered. But since the reduced-form model is not order invariant, results from the structural analysis depend on the order of the variables. We consider a VAR based on the factor stochastic volatility that is constructed to be order… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
5
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(5 citation statements)
references
References 67 publications
0
5
0
Order By: Relevance
“…One key observation is that, conditional on the factors q t , the shocks ε t are independent and equation-by-equation estimation is possible. This factor structure has been used in other papers to facilitate estimation of large VARs (Kastner and Huber, 2020;Chan, Forthcoming;Clark et al, Forthcoming) and, in addition, this structure can also facilitate identification of the factors as structural VAR disturbances (Korobilis, 2022;Chan et al, 2022). Moreover, in contrast to VAR-based estimation using a Cholesky decomposition of the error covariances, another convenient feature of our model is that it is invariant to how the variables are ordered in y t (for a formal argument, see, for example, Chan et al, 2022).…”
Section: A Standard Time-varying Parameter Modelmentioning
confidence: 99%
See 4 more Smart Citations
“…One key observation is that, conditional on the factors q t , the shocks ε t are independent and equation-by-equation estimation is possible. This factor structure has been used in other papers to facilitate estimation of large VARs (Kastner and Huber, 2020;Chan, Forthcoming;Clark et al, Forthcoming) and, in addition, this structure can also facilitate identification of the factors as structural VAR disturbances (Korobilis, 2022;Chan et al, 2022). Moreover, in contrast to VAR-based estimation using a Cholesky decomposition of the error covariances, another convenient feature of our model is that it is invariant to how the variables are ordered in y t (for a formal argument, see, for example, Chan et al, 2022).…”
Section: A Standard Time-varying Parameter Modelmentioning
confidence: 99%
“…We do not impose identification restrictions on our factor model during MCMC estimation. Results in Chan et al (2022) suggest that the decomposition in Eq. ( 2) is identified up to column and sign switching.…”
Section: A Standard Time-varying Parameter Modelmentioning
confidence: 99%
See 3 more Smart Citations