Semiconductor colloidal nanocrystals are excellent light emitters in terms of efficiency and spectral control. They can be integrated with a metasurface to make ultrathin photoluminescent devices with a reduced amount of active material and perform complex functionalities such as beam shaping or polarization control. To design such a metasurface, a quantitative model of the emitted power is needed. Here, we report the design, fabrication, and characterization of a ∼300 nm thick light-emitting device combining a plasmonic metasurface with an ensemble of nanoplatelets. The source has been designed with a methodology based on a local form of Kirchhoff's law. The source displays record high directionality and absorptivity.