Chirality and porosity are characteristic properties of nanostructured materials. Their effects on the mechanical behaviour of structural elements, such as shells, plates and beams, cannot be disregarded. In this paper, we study the thermoelastic deformation of a chiral porous circular beam loaded with an axial force and torque. The beam is also under the action of a constant temperature field. The analytical solution is obtained using the results established in a paper recently published by the Author within the context of the strain gradient theory proposed by Papanicopolous. In the constitutive equations, the chirality is introduced by a material constant parameter and the porosity is described by means of a scalar function. Displacements, microdilatation function, and stress and strain fields are expressed in explicit form and in terms of engineering constants. Explicit formulas of the stiffness of chiral porous circular beams are presented and the effects of right and left chirality are discussed.