We present continuous and time-resolved R = 55 000 opticaléchelle spectroscopy of Aurigae from [2006][2007][2008][2009][2010][2011][2012][2013] We conclude that Hα is contaminated by changes in the circumstellar environment while the Hβ and V I photometry stems predominantly from the non radial pulsations of the F0 supergiant. We isolate the disk-rotation profile from 61 absorption lines and found that low disk eccentricity generally relates to low disk rotational velocity (but not always) while high disk eccentricity always relates to high velocity. There is also the general trend that the disk-absorption in spectral lines with higher excitation potential comes from disk regions with higher eccentricity and thus also with higher rotational velocity. The dependency on transition probability is more complex and shows a bi-modal trend. The outskirts of the disk is distributed asymmetrically around the disk and appears to have been built up mostly in a tail along the orbit behind the secondary. Our data show that this tail continues to eclipse the F0 Iab primary star even two years after the end of the photometric eclipse. High-resolution spectra were also taken of the other, bona-fide, visual-binary components of Aur (ADS 3605BCDE). Only the C-component, a K3-4-giant, appears at the same distance than Aur but its radial velocity is in disagreement with a bound orbit. The other components are a nearby (≈ 7 pc) cool DA white dwarf, a G8 dwarf, and a B9 supergiant, and not related to Aur. The cool white dwarf shows strong DIB lines that suggest the existence of a debris disk around this star.