We analyze the dispersion correction to elastic parity violating electron-proton scattering due to γZ exchange. In particular, we explore the theoretical uncertainties associated with modeling contributions of hadronic intermediate states. Taking into account constraints from low-and high-energy, parity-conserving electroproduction measurements, choosing different models for contributions from the non-resonant processes, and performing the corresponding flavor rotations to obtain the electroweak amplitude, we arrive at an estimate of the uncertainty in the total contribution to the parity-violating asymmetry. At the kinematics of the Q-Weak experiment, we obtain a correction to the asymmetry equivalent to a shift in the proton weak charge of (0.0054 ± 0.0020). This should be compared to the value of the proton's weak charge of Q p W = 0.0713 ± 0.0008 that includes Standard Model contributions at tree level and one-loop radiative corrections. Therefore, we obtain a new Standard Model prediction for the parity-violating asymmetry in the kinematics of the Q-Weak experiment of (0.0767 ± 0.0008 ± 0.0020γZ ). The latter error leads to a relative uncertainty of 2.8% in the determination of the proton's weak charge, and is dominated by the uncertainty in the isospin structure of the inclusive cross section. We argue that future parity-violating inelastic ep asymmetry measurements at low-to-moderate Q 2 and W 2 could be exploited to reduce the uncertainty associated with the dispersion correction. Because the corresponding shift and error bar decrease monotonically with decreasing beam energy, a determination of the proton's weak charge with a lower-energy experiment or measurements of "isotope ratios" in atomic parity-violation could provide a useful cross check on any implications for physics beyond the Standard Model derived from the Q-Weak measurement.