Casing design and the associated load assumptions have evolved considerably over the last 30 years. The objective of this paper is to trace the history, evolution and future of casing design by means of the type of load cases and the assumptions made for them as it evolved from the early 1960's to the modern load case requirements for wells drilled in the 2020's. The vast majority of tubular failures in oil & gas wells are not attributable to computational errors in calculating design loads, but rather are due to a shortfall in considering the appropriate load scenarios. One common shortfall includes making incorrect or oversimplified assumptions for the initial and final temperature and pressure conditions. There is no industry standard for casing or tubing design loads, but there is an industry accepted standard process for the calculation of the stress on tubulars once the load cases are determined. Each operating company may use a different set of load assumptions depending on the well type and risk assessment.
This work also keeps in view the major computational tools used during each step change of the casing design evolution: slide rule/nomographs, HP 41C calculators, PC DOS and Windows programs, and the latest Cloud-Native paradigm with REST API's within a microservices architecture. A REST API (also known as RESTful API) is an Application Programming Interface (API) that conforms to the constraints of Representational State Transfer (REST) architectural style commonly used in current Cloud computing technology. The scope will also include ongoing research and development to address shortcomings of previous load case assumptions and calculations for extended reach and HPHT wells, closely spaced wells, and geothermal wells.
Modern wells and modern casing design load cases are in a constant state of evolution and casing failures will occur unless engineers and their tools also evolve.