Biomedical Engineering / 817: Robotics Applications 2014
DOI: 10.2316/p.2014.818-059
|View full text |Cite
|
Sign up to set email alerts
|

Large Scale Functional Connectivity for Brain Decoding

Abstract: We propose a statistical learning model for classifying cognitive processes based on distributed patterns of neural activation in the brain, acquired via functional magnetic resonance imaging (fMRI). In the proposed learning method, local meshes are formed around each voxel. The distance between voxels in the mesh is determined by using a functional neighbourhood concept. In order to define the functional neighbourhood, the similarities between the time series recorded for voxels are measured and functional co… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2015
2015
2017
2017

Publication Types

Select...
3
1

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 39 publications
0
2
0
1
Order By: Relevance
“…In the second case, four classes correspond to kitchen utensil, furniture, fear and disgust, where kitchen utensil and furniture belong to the neutral category, and fear and disgust belong to the emotional category (see Table III). 5) 73( 7) 82( 12) 81( 8) 79( 5) 88( 9) 78( 10) 81( 13) 79( 9) 72( 5) 84( 14) 66( 8) 77.6 SLM 72(5) 75( 5) 78( 12) 75( 6) 78( 5) 74( 6) 88( 5) 78( 11) 81( 11) 82( 14) 81( 15) 70( 11) 66 (15) 76.8 FMM-mean 50(8) 61( 5) 66( 5) 63( 5) 62( 10) 64( 5) 82( 9) 63( 6) 75( 7) 72( 5) 60( 5) 63( 5) 54( 5) 64.2 FMM-peak 66( 15) 67( 9) 69( 9) 78( 14) 72( 12) 63( 11) 76( 6...…”
Section: B Classification Results For Brain Decodingunclassified
See 2 more Smart Citations
“…In the second case, four classes correspond to kitchen utensil, furniture, fear and disgust, where kitchen utensil and furniture belong to the neutral category, and fear and disgust belong to the emotional category (see Table III). 5) 73( 7) 82( 12) 81( 8) 79( 5) 88( 9) 78( 10) 81( 13) 79( 9) 72( 5) 84( 14) 66( 8) 77.6 SLM 72(5) 75( 5) 78( 12) 75( 6) 78( 5) 74( 6) 88( 5) 78( 11) 81( 11) 82( 14) 81( 15) 70( 11) 66 (15) 76.8 FMM-mean 50(8) 61( 5) 66( 5) 63( 5) 62( 10) 64( 5) 82( 9) 63( 6) 75( 7) 72( 5) 60( 5) 63( 5) 54( 5) 64.2 FMM-peak 66( 15) 67( 9) 69( 9) 78( 14) 72( 12) 63( 11) 76( 6...…”
Section: B Classification Results For Brain Decodingunclassified
“…In order to extract the temporal information from the fMRI data, various studies [13], [14], [15], [16], [17] compute the pairwise correlations between the responses of voxels or brain regions. Among these studies, Pantazatos et al [13] model temporal relationships by using pairwise correlations between brain regions as features for brain decoding.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation