2021
DOI: 10.1016/j.cogr.2021.10.001
|View full text |Cite
|
Sign up to set email alerts
|

Large scale log anomaly detection via spatial pooling

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
1
1

Relationship

1
6

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 7 publications
0
2
0
1
Order By: Relevance
“…In this experiment, we used a total of five models, consisting of two supervised learning models, namely Convolutional Neural Network (CNN) [6] and Long Short-Term Memory (LSTM) [7], and two unsupervised learning models, namely Auto Encoder (AE) [8] and Transformer [9], in addition to our proposed SPClassifier [10]. An overview of each model and the Toolkit parameters used in this study is provided in Section 2.2.1-2.2.5.…”
Section: Evaluated Modelsmentioning
confidence: 99%
See 1 more Smart Citation
“…In this experiment, we used a total of five models, consisting of two supervised learning models, namely Convolutional Neural Network (CNN) [6] and Long Short-Term Memory (LSTM) [7], and two unsupervised learning models, namely Auto Encoder (AE) [8] and Transformer [9], in addition to our proposed SPClassifier [10]. An overview of each model and the Toolkit parameters used in this study is provided in Section 2.2.1-2.2.5.…”
Section: Evaluated Modelsmentioning
confidence: 99%
“…SPClassifier is a model with sparse features and internal representations suitable for training in CPU environments [10]. The proposed method consists of one spatial pooling layer [11,12] and one Feedforward Neural Network for classification, which identifies anomalous patterns from log data transformed into 2D features.…”
Section: Spclassifier (Supervised Model)mentioning
confidence: 99%
“…Araştırmacılar tarafından 2021 yılında gerçekleştirilen geniş ölçekli anomali tespiti için mekânsal havuzlama yöntemi kullanan bir çalışmada sonuçların test edilmesi için Blue Gene/L veri setinden elde edilen ve 4,747,963 log kaydı içeren BGL veri seti kullanılmıştır [12]. 2020 yılında gerçekleştirilen bir çalışmada araştırmacılar tarafından loglar üzerinde denetimsiz anomali tespiti modeli Thunderbird veri seti üzerinde gerçekleştirilmiştir [13]. 2017 yılında gerçekleştirilmiş bir araştırmada RedStorm veri setinin makine öğrenimi kullanılarak HPC (High Performance Computer) sistemleri uygulamalarındaki performans değişikliklerinin tanılanması konusunda kullanıldığı görülmektedir [14].…”
Section: İlgili çAlışmalarunclassified