Although lignin blending with thermoplastic polymers has been widely studied, the usefulness of the lignin-polymer composites is limited by the poor compatibility of the two components. In the present study, alkali lignin/PVA composite membranes were prepared by incorporating 10%, 15%, 20% and 25% alkali lignin into the composites. The thermodynamic parameters of the composites were measured using inverse gas chromatography (IGC). Composite membranes with 10%, 15%, 20%, and 25% alkali lignin had solubility parameters of 17.51, 18.70, 16.64 and 16.38 (J/cm 3 ) 0.5 , respectively, indicating that the solubility parameter firstly increased, and then decreased, with increasing proportions of alkali lignin. When the alkali lignin content was 15%, the composites had the largest solubility parameters. The composite membrane with an alkali lignin content of 15% had a tensile strength of 18.86 MPa and a hydrophilic contact angle of 89 • . We have shown that the solubility parameters of blends were related to mechanical and hydrophilic properties of the composites and the relationships have been verified experimentally and theoretically.