Background: Idiopathic/Isolated rapid eye movement sleep behavior disorder (iRBD) is a prodromal stage of alpha-synucleinopathies and eventually phenoconverts to overt neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Associations of baseline resting-state electroencephalography (EEG) with phenoconversion have been reported. Objectives: In this study, we aimed to develop machine learning models to predict phenoconversion time and subtype using baseline EEG features in patients with iRBD. Methods: At baseline, resting-state EEG and neurological assessments were performed on patients with iRBD. Calculated EEG features included spectral power, weighted phase lag index and Shannon entropy. Three models were used for survival prediction, and four models were used for alpha-synucleinopathy subtype prediction. The models were externally validated using data from a different institution. Results: A total of 236 iRBD patients were followed-up for up to eight years (mean 3.5 years), and 31 patients converted to alpha-synucleinopathies (16 PD, 9 DLB, 6 MSA). The best model for survival prediction was the random survival forest model with an integrated Brier score of 0.114 and a concordance index of 0.775. The K-nearest neighbor model was the best model for subtype prediction with an area under the receiver operating characteristic curve of 0.901. EEG slowing was an important feature for both models. Conclusions: Machine learning models using baseline EEG features can be used to predict phenoconversion time and its subtype in patients with iRBD. Further research including large sample data from many countries is needed to make a more robust model.