A Deus, por Seu exemplo e pelas pessoas que fazem parte da minha vida.Aos meus pais, pelo amor, lealdade e por me transmitirem os valores de honestidade, respeito e educação.Ao Wilson, pela enorme paciência, risadas, conversas, críticas e discussões.Enfim, por ser companheiro.A tantos amigos queridos. Muitas fases, encontros e desencontros, semelhanças e diferenças. E a certeza de que tê-los em minha vida me faz sentir muito feliz.Agora, terão que me dedicar mais tempo de novo! Aos meus orientadores Marco Aurélio Pacheco, pela oportunidade de desenvolver este trabalho, e Douglas Mota Dias, pelas ideias incríveis, paciência e disposição de fazê-lo dar certo.Aos colegas e amigos da Petrobras que muito me ensinaram e pela constante troca de conhecimento e experiência. Em especial, a Alexandre Fuelber e Marcelo Kenji pelas muitas aulas e, a Estefane Horn e Marcelo Maia que ainda "seguraram as pontas" durante este trabalho. À Petrobras, por investir na minha formação.Aos colegas do ICA/PUC, em especial André Vargas, pela paciência nas explicações e pela inestimável ajuda.Aos meus amores "de quatro patas", pela companhia constante.
AbstractPereira, Cristiane Salgado; Pacheco, Marco Aurélio C. (Advisor); Dias, Douglas Mota (Co-Advisor). Petroleum Scheduling Multiobjective Optimization for Refinery by Genetic Programming using Domain Specific Language. Rio de Janeiro, 2012. 135p. MSc. Dissertation -Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.Refinery scheduling can be understood as a sequence of decisions that targets the optimization of available resources, sequencing and execution of activities on proper timing; always respecting restrictions of different natures. The final result must achieve multiple objectives guaranteeing co-existence of different factors in the same function, such as production demand fullfillment and minimize operational variation. In this work it is proposed the use of the genetic programming technique to automate the building process of programs that represent a complete oil scheduling solution within a defined time horizon. For the evolution of those programs, it was developed a domain specific language to translate oil scheduling instructions that was applied to represent the most relevant activities for the proposed case studies. For that, purpose first step was to evaluate a few real scheduling scenarios to select which activities needed to be represented and how to do that. On the proposed model, each quantum chromosome represents the overlapping of all solutions and by the evolutionary process (and quantum gene measurement) the classic chromosome is created as a linear sequence of scheduling instructions to be executed. The orientation for this process is performed through a multi-object fitness function that prioritizes the evaluations according to: the operating time of the atmospheric distillation unities, the oil unloading time from the ships, the oil pipeline operation to transport oil to the refinery and other parameters like the number of...