2014 IEEE Geoscience and Remote Sensing Symposium 2014
DOI: 10.1109/igarss.2014.6947590
|View full text |Cite
|
Sign up to set email alerts
|

Large scale region-merging segmentation using the local mutual best fitting concept

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
4
0
2

Year Published

2015
2015
2024
2024

Publication Types

Select...
3
3

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(6 citation statements)
references
References 1 publication
0
4
0
2
Order By: Relevance
“…We use the method described in Ref. [15] with OTB's GenericRegionMerging (Large Scale version) application [16]. To obtain a segmentation result adapted to our study, we act on both the homogeneity criteria and the maximum heterogeneity threshold.…”
Section: Experimental Design Materials and Methodsmentioning
confidence: 99%
“…We use the method described in Ref. [15] with OTB's GenericRegionMerging (Large Scale version) application [16]. To obtain a segmentation result adapted to our study, we act on both the homogeneity criteria and the maximum heterogeneity threshold.…”
Section: Experimental Design Materials and Methodsmentioning
confidence: 99%
“…The Moringa processing chain is designed to provide object-based supervised classification, and operates by first performing the segmentation of the VHSR image to generate a suitable object layer. The method described in [13] , implemented in the large scale version of OTB's GenericRegionMerging application [14] , was used to perform the segmentation. To obtain a segmentation result adapted to our study, parameters for the homogeneity criteria and the maximum heterogeneity threshold were assessed using a grid search on several representative subsets of the VHSR pansharpened image.…”
Section: Experimental Design Materials and Methodsmentioning
confidence: 99%
“…Training samples were subsequently generated by intersecting the so-obtained segmentation with the reference polygons available in the GIS dataset, and attributed using the spatial means over every band and index listed in Table 2 . Random Forest (RF) classification algorithm [ 14 , 15 ] was chosen for classification considering its robustness when working with heterogeneous data, such as in our study (data from several sensors combined with altitude, slopes and textural indices).…”
Section: Experimental Design Materials and Methodsmentioning
confidence: 99%
“…A outra ideia está relacionada com à utilização de tiles com sobreposição de forma a produzir áreas estáveis onde há a garantia de que, para uma dada quantidade de iterações, o crescimento de regiões será sempre igual. Esta solução remete à margem de estabilidade proposta em (Lassale et al, 2014) e requer que após uma quantidade pré-determinada de iterações, as iterações restantes do crescimento de regiões sejam realizadas uma de cada vez como processos distribuídos.…”
Section: 1trabalhos Futurosunclassified
“…Com o avanço da tecnologia de integração em altíssima escala organizações paralelas de computadores se tornaram disponíveis comercialmente a preços acessíveis. Assim, a computação paralela se tornou a principal opção para acelerar o procedimento de segmentação de imagens reduzindo consideravelmente o tempo gasto na análise de imagens baseadas em objetos (Moga et al, 2008, Montoya et al, 2003, Lenkiewicz et al 2009, Happ et al, 2013.…”
unclassified