Landscapes are becoming increasingly urbanized, causing loss and fragmentation of natural habitats, with potentially negative effects on biodiversity. Insects are among the organisms with the largest diversity in urbanized environments. Here, we sampled predator (Ampulicidae, Sphecidae and Crabronidae) and parasitoid (Tachinidae) flower-visiting insects in 36 sites in the city of Rome (Italy). Although the diversity of herbivorous insects in urban areas mostly depends on the availability of flowering plants and nesting sites, predators and parasitoids generally require a larger number of resources during their life cycle, and are expected to be particularly influenced by urbanization. As flower-visitors can easily move between habitat patches, the effect of urbanization was tested at multiple spatial scales (local, landscape and sub-regional). We found that urbanization influenced predator and parasitoid flower-visitors at all three spatial scales. At the local scale, streets and buildings negatively influenced evenness of predators and species richness and abundance of parasitoids probably acting as dispersal barrier. At the landscape scale, higher percentage of urban decreased predator abundance, while increasing their evenness, suggesting an increase in generalist and highly mobile species. Area and compactness (i.e. Contiguity index) of urban green interactively influenced predator communities, whereas evenness of parasitoids increased with increasing Contiguity index. At the sub-regional scale, species richness and abundance of predators increased with increasing distance from the city center. Compared to previous studies testing the effect of urbanization, we found little variation in species richness, abundance and evenness along our urbanization gradient. The current insect fauna has been probably selected for its tolerance to habitat loss and fragmentation, being the result of the intensive anthropogenic alteration occurred in the area in the last centuries. Conservation strategies aimed at predator and parasitoid flying insects have to take in account variables at multiple spatial-scales, as well as the complementarity of resources across the landscape.