Ceramic aerogel is an appealing fireproof and heatinsulation material, but synchronously improving its mechanical and thermal properties is a challenge. Moreover, the expensive discontinuous processing techniques inhibit the large-scale fabrication of ceramic aerogels. Here, we propose a water-based electrospinning method, based on the hydrolysis and condensation reactions of ceramic precursor salts themselves, for the continuous and rapid (0.025 m 3 /min) fabrication of ceramic fiber sponge aerogels with dual micronano fiber networks, which show synchronous enhanced fireproof, thermal insulation, and resilience performance. The elastic ceramic micro/nano fiber sponge aerogels contain robust silica-based microfibers as a firm skeleton and aluminabased nanofibers as elastic thermal insulation filler. The sponges have a high porosity of >99.8%, a low mass density (6.21 mg/cm 3 ), a small thermal conductivity (0.022 W/m•K), and a large compression strength (21.15 kPa at 80% strain). The ceramic fiber sponges can effectively prevent the propagation of thermal runaway when a lithium battery experiences catastrophic thermal shock (>1000 °C) in the power battery packs. The proposed strategy is feasible for low-cost and rapid synthesizing ceramic aerogels toward effective battery thermal management.